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What is IntelŃ ĆģĵĨĲĮı

Vectorization analysis

Threading prototyping

Intel Confidential

Roofline 

Cache Simulator and MAP Python API





ĈĮįĸıĨĦħĳ ł  <:;A# ĎĭĳĤī ĈĮıįĮıĠĳĨĮĭ! Ćīī ıĨĦħĳĲ ıĤĲĤıĵĤģ! 
*Other names and brands may be claimed as the property of others.

Optimization Notice

ČĤĳ ċĠĲĳĤı ĈĮģĤ ċĠĲĳĤı&  ĎĭĳĤīŃ Advisor
Vectorization Optimization

Have you:
ÁRecompiled for AVX2 with little gain

ÁWondered where to vectorize?

ÁRecoded intrinsics for new arch.?

ÁStruggled with compiler reports?

Data Driven Vectorization:
ÁWhat vectorization will pay off most?

ÁĜħĠĳœĲ blocking vectorization?  Why?

ÁAre my loops vector friendly?

ÁWill reorganizing data increase performance?

Á Is it safe to just use #pragma omp simd?
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The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

Filter by which loops 
are vectorized!

What vectorization 
issues do I have?

Focus on 
hot loops

How efficient 
is the code?

What prevents 
vectorization?

Which Vector instructions 
are being used?

Trip Counts

Get Faster Code Faster! 
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5 Steps to Efficient Vectorization
ĎĭĳĤīŃ Advisor ÝVectorization Advisor
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1. Compiler diagnostics + Performance 
Data + SIMD efficiency information

2. Guidance: detect problem and 
recommend how to fix it

4. Memory Access Patterns Analysis 5. Loop-Carried Dependency Analysis

3. Trip Counts + FLOP: understand utilization, 
parallelism granularity & overheads



1. Compiler diagnostics + Performance 
Data + SIMD efficiency information

+ Binary Analysis
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Vector Efficiency:  All The Data In One Place
Ēĸ ŕįĤıĥĮıĬĠĭĢĤ ĳħĤıĬĮĬĤĳĤıŖ

ĘĴıĵĤĸ"  ċĨĭģ ĮĴĳ Ĩĥ ĸĮĴı ĢĮģĤ ĨĲ ŕĴĭģĤı ĵĤĢĳĮıĨĹĤģŖ Ġĭģ Ķħĸ

Achieved 
Efficiency

Original (scalar) 
code efficiency.
Corresponds 
to 1x speed-up.

Upper bound:
100% 
efficiency 
4x gain 

(VL=4)

Å Auto -vectorization : affected <3% of code 

Å With moderate speed-ups

Å First attempt to simply put #pragma omp simd :

Å Introduced slow-down

Å Look at Vector Issues and Traits to find out why

Å Ćīī ĪĨĭģĲ Įĥ ŕĬĤĬĮıĸ ĬĠĭĨįĴīĠĳĨĮĭĲŖ

Å ĚĲĴĠīīĸ Ġĭ ĨĭģĨĢĠĳĨĮĭ Įĥ ŕġĠģŖ ĠĢĢĤĲĲ įĠĳĳĤıĭ
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Vectorization tied to your code
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ĉĮĭœĳ ďĴĲĳ ěĤĢĳĮıĨĹĤ# ěĤĢĳĮıĨĹĤ ĊĥĥĨĢĨĤĭĳīĸ
See detailed times for each part of your loops.  Is it worth more effort?
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1. Compiler diagnostics + Performance 
Data + SIMD efficiency information

2. Guidance: detect problem and 
recommend how to fix it
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Click to see recommendation

Advisor shows hints to move 
iterations to vector body.

Get Specific Advice For Improving Vectorization
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1. Compiler diagnostics + Performance 
Data + SIMD efficiency information

2. Guidance: detect problem and 
recommend how to fix it

3. Trip Counts + FLOP: understand utilization, 
parallelism granularity & overheads
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Critical Data Made Easy 
Loop Trip Counts

Knowing the time 
spent in a loop is not 

enough!
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Check 
actual trip 

counts

Find trip counts for 
each part of a loop 
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ÁFLOPS by loop and function

ÁAll recent Intel processors 

ÁInstrumentation (count FLOP) plus 
sampling (time with low overhead)

ÁAdjusted for masking 
with AVX-512 processors

Precise Repeatable FLOP Metrics



1. Compiler diagnostics + Performance 
Data + SIMD efficiency information

2. Guidance: detect problem and 
recommend how to fix it

3. Trip Counts + FLOP: understand utilization, 
parallelism granularity & overheads

3. Memory Access Patterns Analysis
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Run Memory Access Patterns analysis, 
just to check how memory is used in 
the loop and the called function

Select loops of 
interest

Improve Vectorization
Memory Access pattern analysis
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Advisor Memory Access Pattern (MAP) : 
know your access pattern

for (i=0; i<N; i+ +) 

A[B[i]] = C[i]*D[i]

for (i=0; i<N; i+ +) 

A[i] = C[i]*D[i]

for (i=0; i<N; i++) 

point [i].x = x[i]

Unit -Stride access 

Constant stride access 

Variable stride access 
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Find vector optimization opportunities 
Memory Access pattern analysis
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1. Compiler diagnostics + Performance 
Data + SIMD efficiency information

2. Guidance: detect problem and 
recommend how to fix it

4. Memory Access Patterns Analysis

3. Trip Counts + FLOP: understand utilization, 
parallelism granularity & overheads

5. Loop-Carried Dependency Analysis
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Enabling vectorization

Check dependencies

Use #pragma simd
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Is It Safe to Vectorize?
Loop-carried dependencies analysis verifies correctness

Vector Dependence 
prevents 

Vectorization!

Select loop for 
Correct 

Analysis and 
press play!
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Correctness ÝIs It Safe to Vectorize?
Loop-carried dependencies analysis

Received recommendations to force vectorization of a 
loop:

1. Mark-up loop and check for REAL dependencies 

2. Explore dependencies with code snippets

In this example 3 dependencies were detected:

Á RAW ÝRead After Write

Á WAR ÝWrite After Read

Á WAW ÝWrite After Write

This is NOT a good candidate to force 
vectorization!

Detected 
dependencies

Source lines with Read and 
Write accesses detected
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